Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.

Identifieur interne : 003001 ( Main/Exploration ); précédent : 003000; suivant : 003002

An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.

Auteurs : Haihai Wang [République populaire de Chine] ; Cuiting Wang ; Hua Liu ; Renjie Tang ; Hongxia Zhang

Source :

RBID : pubmed:21717184

Descripteurs français

English descriptors

Abstract

Transgenic technology has been successfully used for gene function analyses and trait improvement in cereal plants. However, its usage is limited in woody plants, especially in the difficult-to-transform but commercially viable hybrid poplar. In this work, an efficient regeneration and transformation system was established for the production of two hybrid aspen clones: Populus alba × P. berolinensis and Populus davidiana × P. bolleana. A plant transformation vector designed to express the reporter gene uidA, encoding β-glucuronidase (GUS), driven by the cauliflower mosaic virus 35S promoter, was used to detect transformation event at early stages of plant regeneration, and to optimize the parameters that may affect poplar transformation efficiency. Bacterium strain and age of leaf explant are two major factors that affect transformation efficiency. Addition of thidiazuron (TDZ) improved both regeneration and transformation efficiency. The transformation efficiency is approximately 9.3% for P. alba × P. berolinensis and 16.4% for P. davidiana × P. bolleana. Using this system, transgenic plants were usually produced in less than 1 month after co-cultivation. The growth characteristics and morphology of transgenic plants were identical to the untransformed wild type plants, and the transgenes could be inherited by vegetative propagation, as confirmed by PCR, Southern blotting, RT-PCR and β-glucuronidase staining analyses. The establishment of this system will help to facilitate the studies of gene functions in tree growth and development at a genome level, and as well as the introduction of some valuable traits in aspen breeding.

DOI: 10.1007/s00299-011-1111-1
PubMed: 21717184


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.</title>
<author>
<name sortKey="Wang, Haihai" sort="Wang, Haihai" uniqKey="Wang H" first="Haihai" last="Wang">Haihai Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032</wicri:regionArea>
<wicri:noRegion>200032</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
</author>
<author>
<name sortKey="Liu, Hua" sort="Liu, Hua" uniqKey="Liu H" first="Hua" last="Liu">Hua Liu</name>
</author>
<author>
<name sortKey="Tang, Renjie" sort="Tang, Renjie" uniqKey="Tang R" first="Renjie" last="Tang">Renjie Tang</name>
</author>
<author>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21717184</idno>
<idno type="pmid">21717184</idno>
<idno type="doi">10.1007/s00299-011-1111-1</idno>
<idno type="wicri:Area/Main/Corpus">002D58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D58</idno>
<idno type="wicri:Area/Main/Curation">002D58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D58</idno>
<idno type="wicri:Area/Main/Exploration">002D58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.</title>
<author>
<name sortKey="Wang, Haihai" sort="Wang, Haihai" uniqKey="Wang H" first="Haihai" last="Wang">Haihai Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032</wicri:regionArea>
<wicri:noRegion>200032</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
</author>
<author>
<name sortKey="Liu, Hua" sort="Liu, Hua" uniqKey="Liu H" first="Hua" last="Liu">Hua Liu</name>
</author>
<author>
<name sortKey="Tang, Renjie" sort="Tang, Renjie" uniqKey="Tang R" first="Renjie" last="Tang">Renjie Tang</name>
</author>
<author>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (physiology)</term>
<term>Blotting, Southern (MeSH)</term>
<term>Clone Cells (MeSH)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Vectors (genetics)</term>
<term>Glucuronidase (genetics)</term>
<term>Glucuronidase (metabolism)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Plant Leaves (enzymology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (physiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (microbiology)</term>
<term>Regeneration (genetics)</term>
<term>Regeneration (physiology)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>Agrobacterium (physiologie)</term>
<term>Clones cellulaires (MeSH)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Glucuronidase (génétique)</term>
<term>Glucuronidase (métabolisme)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>RT-PCR (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régénération (génétique)</term>
<term>Régénération (physiologie)</term>
<term>Technique de Southern (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Vecteurs génétiques (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>Glucuronidase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Vectors</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>Feuilles de plante</term>
<term>Glucuronidase</term>
<term>Populus</term>
<term>Régénération</term>
<term>Vecteurs génétiques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucuronidase</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucuronidase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Agrobacterium</term>
<term>Feuilles de plante</term>
<term>Régénération</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Agrobacterium</term>
<term>Plant Leaves</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Southern</term>
<term>Clone Cells</term>
<term>Crosses, Genetic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Hybridization, Genetic</term>
<term>Plants, Genetically Modified</term>
<term>Reproducibility of Results</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clones cellulaires</term>
<term>Croisements génétiques</term>
<term>Hybridation génétique</term>
<term>RT-PCR</term>
<term>Reproductibilité des résultats</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Technique de Southern</term>
<term>Transformation génétique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transgenic technology has been successfully used for gene function analyses and trait improvement in cereal plants. However, its usage is limited in woody plants, especially in the difficult-to-transform but commercially viable hybrid poplar. In this work, an efficient regeneration and transformation system was established for the production of two hybrid aspen clones: Populus alba × P. berolinensis and Populus davidiana × P. bolleana. A plant transformation vector designed to express the reporter gene uidA, encoding β-glucuronidase (GUS), driven by the cauliflower mosaic virus 35S promoter, was used to detect transformation event at early stages of plant regeneration, and to optimize the parameters that may affect poplar transformation efficiency. Bacterium strain and age of leaf explant are two major factors that affect transformation efficiency. Addition of thidiazuron (TDZ) improved both regeneration and transformation efficiency. The transformation efficiency is approximately 9.3% for P. alba × P. berolinensis and 16.4% for P. davidiana × P. bolleana. Using this system, transgenic plants were usually produced in less than 1 month after co-cultivation. The growth characteristics and morphology of transgenic plants were identical to the untransformed wild type plants, and the transgenes could be inherited by vegetative propagation, as confirmed by PCR, Southern blotting, RT-PCR and β-glucuronidase staining analyses. The establishment of this system will help to facilitate the studies of gene functions in tree growth and development at a genome level, and as well as the introduction of some valuable traits in aspen breeding.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21717184</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.</ArticleTitle>
<Pagination>
<MedlinePgn>2037-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-011-1111-1</ELocationID>
<Abstract>
<AbstractText>Transgenic technology has been successfully used for gene function analyses and trait improvement in cereal plants. However, its usage is limited in woody plants, especially in the difficult-to-transform but commercially viable hybrid poplar. In this work, an efficient regeneration and transformation system was established for the production of two hybrid aspen clones: Populus alba × P. berolinensis and Populus davidiana × P. bolleana. A plant transformation vector designed to express the reporter gene uidA, encoding β-glucuronidase (GUS), driven by the cauliflower mosaic virus 35S promoter, was used to detect transformation event at early stages of plant regeneration, and to optimize the parameters that may affect poplar transformation efficiency. Bacterium strain and age of leaf explant are two major factors that affect transformation efficiency. Addition of thidiazuron (TDZ) improved both regeneration and transformation efficiency. The transformation efficiency is approximately 9.3% for P. alba × P. berolinensis and 16.4% for P. davidiana × P. bolleana. Using this system, transgenic plants were usually produced in less than 1 month after co-cultivation. The growth characteristics and morphology of transgenic plants were identical to the untransformed wild type plants, and the transgenes could be inherited by vegetative propagation, as confirmed by PCR, Southern blotting, RT-PCR and β-glucuronidase staining analyses. The establishment of this system will help to facilitate the studies of gene functions in tree growth and development at a genome level, and as well as the introduction of some valuable traits in aspen breeding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Haihai</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Cuiting</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Renjie</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hongxia</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C036483">T-DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015139" MajorTopicYN="N">Blotting, Southern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002999" MajorTopicYN="N">Clone Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="Y">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21717184</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-011-1111-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2006 Nov;47(11):1582-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17018558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Jul;93(3):1110-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1978 Jul 11;163(2):181-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">355847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 Jun;29(6):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Jul;18(7):784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Apr;26(4):401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16414919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:297-326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1994 Dec;14(2-3):94-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24192872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Nov;210(1):19-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2004 Mar;22(8):584-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 Mar;29(3):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20087597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1996 Apr;15(8):566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178519</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Hua" sort="Liu, Hua" uniqKey="Liu H" first="Hua" last="Liu">Hua Liu</name>
<name sortKey="Tang, Renjie" sort="Tang, Renjie" uniqKey="Tang R" first="Renjie" last="Tang">Renjie Tang</name>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Haihai" sort="Wang, Haihai" uniqKey="Wang H" first="Haihai" last="Wang">Haihai Wang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003001 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003001 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21717184
   |texte=   An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21717184" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020